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Scattering of surface waves by rectangular 
obstacles in waters of finite depth 

By CHIANG C.  ME1 AND JARED L. BLACK 
Hydrodynamics Laboratory, Department of Civil Engineering, 

Massachusetts Institute of Technology 

(Received 11 October 1968 and in revised form 4 March 1969) 

The scattering of infinitesimal surface waves normally incident on a rectangular 
obstacle in a channel of finite depth is considered. A variational formulation is 
used as the basis of numerical computations. Scattering properties for bottom 
and surface obstacles of various proportions, including thin barriers and surface 
docks, are presented. Comparison with experimental and theoretical results by 
other investigators is also made. 

~ ~ _ _ _ _ _  ~~ 

1. Introduction 
The scattering of water waves by large obstacles has been well known for the 

mathematical difficulties encountered within the framework of linearized poten- 
tial theory. While some general features (such as symmetry relations, bounds) 
regarding the reflexion or transmission properties have been studied previously 
(Kreisel 1949), explicit calculations have been successful only in a few limiting 
cases. Most of the known exact solutions are in waters of infinite depth for 
vertical thin barriers (Dean 1945; Ursell 1947), semi-immersed circular cylinders 
(Dean & Ursell 1959), or a step shelf (Newman 1965a). Furthermore, the only 
exact solution for a continuously varying depth is that of Roseau (1952) for 
a special bottom profile. Barakat (1968) has recently given numerical solutions 
for symmetrical cylinders with rounded corners fixed in the free surface. 

In  the case of finite water depth some approximate solutions have been found 
for long waves (Kajiura 1961; Ogilvie 1960), for long bottom obstacles (Newman 
1965b), and for low bottom obstacles (Kreisel 1949; Mei 1967). Stoker (1957, 
p. 434) dealt with the problem of a surface dock with zero submergence in long 
waves. While these studies point out many interesting qualitative features of 
the wave scattering, their approximations also severely limit the quantitative 
usefulness of the results. 

For engineering purposes it is of interest to obtain results valid for the whole 
wavelength spectrum, finite water depth, and finite obstacle dimensions. The 
effect of various geometrical proportions can best be understood by investigating 
rectangular obstacles in a channel of finite depth. This class of problems has 
close analogues in electromagnetic wave guides with a thick inductive window, 
for which a variational method of solution is most effective.? Miles (1 967) recently 

t Theoretical attempts by straightforwardly joining eigenfunction expansions at  
junction surfaces have been unsuccessful, because of poor convergence in numerical work 
(Takano 1960). 
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applied the variational method to a step shelf and achieved remarkably good 
results, as compared with the numerical solution by Newman (1965a), for the far 
field with only a crude approximation on the near field. In  this paper the same 
formulation is adopted and numerical results for both surface (semi-immersed) 
and bottom obstacles of various proportions (figures 1 (a) ,  ( b ) )  are presented. 
Only the normal incidence of simple harmonic waves on two-dimensional 
obstacles is treated here. Available experimental, as well as theoretical, data are 
collected for comparison. 

2. General formulation 
In  this paper explicit calculations will be done for an obstacle fixed either on 

the bottom (case I) or in the free surface (case 11)) see figure 1, although the com- 
bined problem ofa thick barrier having a submerged gap can be similarly treated. 
With the usual assumptions of a perfect fluid and small amplitudes the velocity 
potential, 

satisfies the following conditions : 

(2.1) W x 7  Y, t )  = $(X> Y) eiwt, 

V2$ = 0,  x, y in fluid; 

I -h  < y < -H:(1)) 
-H  < y < 0 :  (11) 

a$ - = 0) 
8X 1x1 = 1)  

I n  addition we impose the radiation condition that there are both left- and right- 
going waves a t  x N -a but only right-going waves a t  x N co. 

As is usual in problems ofwave-guide discontinuities it is convenient to split the 
potential into a symmetric and an antisymmetric part 

$ = $&'+$A with $&'(-x)Y) = $S(x,Y), = (2.6) 

such that the analysis can be restricted to x < 0 only. Physically $s($,) corre- 
sponds to the scattering of two waves incident from x N - co and x N 00 towards 
a symmetrical obstacle, with equal amplitude and equal (opposite) phase. The 
symmetrical case has also been studied by Miles (1967). Since the energy flux 
across the plane x = 0 is 

and since 8% ~ (0) y, t )  = __ (0, y, t )  = 0, 
ax at 

it follows that Ex = E, = 0 a t  x = 0. 

Thus the reflexion coefficient is of unit magnitude in either case; 

IR,J = IRA] = 1. 
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FIGURE 1. Definition sketch. (a )  Submerged obstacle. ( b )  Surface obstacle. 

h 

When the complex coefficients R, and RA are represented by unit vectors in 
a phasor diagram, one can deduce the following known results (Kreisel 1949): 

V 

The phase angles 8, and 8, differ by in; however, their respective values depend 
on the quadrants in which the vectors R, and RA lie. 

3. Case I. Bottom obstacle 
(a )  The antisymmetric part and the variational formulation 

Although the variational formulation to be employed is a standard procedure in 
wave-guide problems (Collin 1960) and has also been demonstrated by Miles 
(1967, 1968) for hydrodynamical problems, we shall outline it here for the sake 
of convenience. 
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The potential for different regions will be expressed by appropriate eigen- 
function expansions; for explicitness we separate the propagating mode from the 
evanescent modes 

m - 
#,(x, y) = b,[e-ik@+R + r A eik(s+l) If1+ x bneqn(s+z)fn (x< -1 ,  - h < y < O )  ( 3 . 1 ~ )  

= BIFlsinKx+ C BnFnsinhQnz (1x1 <1,  -H<y<O);  (3.1 b) 

n=2 
a, 

n=2 

} (3.2) 
where fl(y) = 4 2(h + c r l  sinh2 kh)-& cosh k(y + h);  

fn(y) = 42(h-r1sin2qnh)-4cosqn(y+h) (n=2,3, ...); 

and k ,  qn are the real positive roots of the following equations: 

ktanhkh = CT, qntanqnh = -CT (n=2 ,3  ,... ). (3.3) 

It can be readily shown that { f i )  form an orthonormal set over the interval 
( - h < y < 0) .  For the shallow region the quantities Fi, K ,  and Q, are defined 
similarly by replacing fi, k, and qn above with h changed to H .  We note that the 
reflexion coefficient is given by 

R, = rA eZik1. (3 .4)  

Continuity of g A  at x = -1 requires that 

m W 

b,( 1 + r A )  fl+ C. bnfn = - BIFlsin K1- C. BnFnsinhQnZ. (3 .5)  
2 2 

Continuity of the horizontal velocity a#,/ax at  x = - 1 requires that 

( - H < y < O ) ;  

(3.6) 

1 
W 

U,(y) 5 -ikb,(l-r,)f,+C.b,pnfn, 
2 

W 

= B,KT,cosKZ+~ B,Q,FncoshQnl, 
2 

= 0 ( - h < y <  - H ) .  

When the orthonormal conditions are used the coefficients bi, Bi can be expressed 
as integrals of UA andfi, Fi from (3.6); substitution into (3 .5)  yields the following 
integral equation for U,(y) : 

where 

and 

8, E (1  +?.A) (ikf-1 (1 - ra)-l, (3.8) 

UA = UA(y'), etc. (3.9) 

Multiplying both sides of (3.7) by U, and integrating with respect to y from 
- H to 0,  we obtain finally 

(3.11) 
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It is easy to show that, in the form (3.11), X A  is stationary with respect to 
independent variations of UA or U;. By virtue of (3.8)) SA is obviously related to 
the reflexion characteristics. We shall first assume a form for lJA with many 
parameters (u,,); the ‘best’ values for (ur} will then be chosen by invoking the 
fact that S, is stationary. 

... 

... 

( b )  Calculation of XA 

We follow the steps explained in Collin (1960, p. 352) and expand UA in terms of 

UA(Y) = E%K(Yh (3.12) 

with the coefficients ur yet unknown. Substituting (3.12) into (3.11) and invoking 
the conditions 

s = O  ( r = 1 , 2 , 3  ..... M ) ,  

a set of homogeneous equations for ur results. For non-trivial solutions the vanish- 
ing of the coefficient determinant ( M  x M )  finally yields an expression for 

eigenfunctions Fr(y), M 

1 

aUr 

1 

- ... ... 

... 1 ... 1 

> (3.13) ... 

... I ... ... I I ... 
0 

where Pn, = f, F, dy = ( h  - CT-~ sin2 qn h)-* ( H  - C T - ~  sin2 Q, H ) d  
S - H  

and 
* tanhQnl 

S,,Sn, ( r , s  = 1,2,3,  M ) .  
m tan Kl 

g4 = C PnrPnsIqn+T Slr’ls+ C ~ 

.... 
n= 2 n=2 Qm 

(3.15) 

In order not to repeat (3.14) for Plm and Pnl, we mention that qn should be 
replaced by ik for n = 1, and Q, by iK for m = 1. 

Thus the problem reduces to the numerical evaluation of the determinants 
where each term is composed of infinite series, Computational aspects are 
discussed in 5 6. 

(c) The symmetric part 

Except for those indicated below, most of the relations in $5 3 (a)  and 3 ( b )  remain 
applicable with the mere change of subscripts from ( ) A  to ( )s. The potential 
for the shallow region should be changed to 

m 

2 
$8 = BIFlcosKx+~BB,F,cosh&,x (1x1 <1, -H<y<O).  (3.16) 
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" f n &  cotK1 O0 coth Q, 1 

Pn,Pn, cotK18 cothQnE8 

Qs(Y/Y') = c __ - __ J?,q+z- FnFL (3.17) 

(3.18) 

2 (In 2 Qn 

nr ns' g z =  x ___-__ 
and n=2 Pn K lr lS+zz&n 
4. Case 11. Surface obstacles 

The difference from the case of bottom obstacles arises solely from the different 
boundary conditions in the region 1x1 < 1. Without introducing new notations, 
we shall only identify those formulas in $ 3  that need modifications and give the 
corresponding replacements : 

W 

$ A  = B,F,x+x BnFnsinhQnx, (4.1) for (3 . lb)  
2 (1x1 < 1, 1. 

\ - h < y <  -Hj' 
(1.2) for (3.16) 

where Fl = D-4, Fn = (2/D)*cosQn(y+h), (4.3) 

Q, = (n-l)n-/D, D = h - H .  (4.4) 

The functions {Fi} form the complete orthonormal set appropriate for the 
boundary conditions (2.4) (case 11). I n  $s we have omitted a constant term 
B, Fl which is immaterial to the flow field. The limits of integration in formulas 
corresponding to (3.7), (3.11), and (3.14) are now from -h  to - H .  Furthermore 
we have tanhQ 1 

GA(y/y') = c f n f A  -- + 1 + c pn- FnF;, (4.5) for (3.10) 

FnFA], (4.6) for (3.17) 

nr ns, (4.7) for (3.15) 

(4.8) for (3.18) 

2 4n 2 Qn 

W coth Q, 1 
2 

O0 tanhQ l g  

[*+c*lb nr 6 ns ] , 

" P P  d =  z- nr ""+1S,,Sl,+ c pn- 

n = 2  Qn 

n=2 qn n=2 Qn 

9: = 

where { f n }  are given by (3.2) as before. Because of the changes in {Fn} the modified 
forms of P,, are: 

sin qn D P,, = (2/D)* (h-  r1 sin2qnh)-* ___ (4.9a) 
qn 

and (4.9b) 

*' Limiting (a) Thin barrier, finite depth 

For a barrier of zero thickness, fixed either on the bottom or in the free surface, 
the symmetric part, (ss, corresponds to a vertical cliff extending for the entire 
depth of the fluid, and the reflexion coefficient, Rs, must be 1. This result also 
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follows from the general formulas of the preceding sections. Taking the bottom 
obstacles, for instance, for small I ,  gfl behaves like I-1 while all other gg ( r  or 
s $. 1) remain finite; thus S, - I-’ and lim Rs = 1, as is evident from (3.18) and, 

1-0 

with ( ) A  changed to ( ),, (3.13) and (3.14). The limit of Z+O is easily taken for 
the antisymmetric part. The representation for U,(y) by (3.12) is still a useful 
one, although f&) is now merely one of many orthonormal sets that may be 
adopted. 

(b)  InJinite water depth, arbitrary thickness 

As h + co, the eigenvalue spectrum in the zone 1x1 > 1 for bottom obstacle con- 
tains a discrete value (k = u, propagating) and a continuous part (0 < q < co, 
evanescent). The corresponding eigenfunctions are (Miles 1967) 

f , (Y) = J ( 2 4  euu, (5.1) 
f(y) = [2/7r(g2 + u2)]-: (q  cos qy + usin qy),  

which are orthonormal in the following sense: 
0 0 s” f,2& = 1, 1 fif@f = 0, 1 f (y ,df (y ,g’ )dy  = &?-q’). (5.2) 

--m --m - W  

The series involving f n  in (3.10) and (3.17) must be changed to integral form; 

The variational expressions for S, or S, are then obtained by substituting (5.3) 
into (3.11). 

Although the general representation of UA or Us by (3.12) can be used, in view 
of Miles’ (1967) success, in the case of a semi-infinite shelf, by using only the 
first term (the plane wave approximation), we record the corresponding approxi- 
mation below: 

+L [ tan K z  ] ( H +  u-lsinh2 KH) 
K -cotKl 

The integral above has been evaluated in terms of tabulated functions by 
Miles (1967). 

For surface obstacles, as h+ 03, D = h- H + 03 also and the eigenvalue 
spectrum Qn becomes continuous. The limiting expressions for GA and G, can 
be similarly written; however, a convenient and suitable trial function for 
U,(y) or Us(y) has not been found by the authors. The formulas will therefore 
be omitted. 

6. Aspects of numerical computation 
For all cases of finite water depth, the numerical work involves the summation 

of an infinite series for each grs, and the evaluation of determinants. From (3.3) 
and (3.14) it  can be seen that, for large n, gnh - (n- 1 ) n  and P,, N g;l; hence 



506 C. C. Mei and J .  L. Black 

Pnr Pn,lqn N n-3 for given r and s, and the series for qrs converges reasonably fast. 
However, owing to the factor (q,-Q,)-l in P,,, a large (although finite) Pn,. 
is possible. As an estimate we take n and Y to be large, then q, z Q, if 

n z rh/H. (6.1) 

Therefore, the series cannot be truncated until beyond this threshold value. 
It also indicates that, as h/H increases, more terms must be summed to assure 
accuracy. Although these qualitative observations are made with respect to the 
bottom obstacles, the conclusions are true for surface obstacles as well. 

Numerical tests were made to check the convergence of the results by varying 
the number of terms summed in each qrs and the number of terms used to ap- 
proximate U(y) (equal to the order of determinants). Using 5 terms? for U(y) 
and 5h/H + 15 terms in the series (based on (6.1)) we obtain an accuracy within 
one per cent if h/H < 10 for bottom obstacles, and if h/H < 6 for surface obstacles. 
The slower convergence in the latter case may be expected because the leading 
terms in the assumed expansion for U(y) become increasingly unsuitable for 
large h /H.  All computations were done on an IBM 1130 computer. 

For bot'tom obstacles and infinite h/H calculations were done only with a one- 
term (plane wave) approximation according to (5.4). Evidence of good accuracy 
is provided by comparing with Dean's (1945) exact solution for a thin barrier. 
Presumably, an even better approximation for Dean's case would be 

U ( y )  cc (H2  - y2)t, 

which would give the scattering coefficients in terms of modified Bessel and 
Struve functions. 

7. Results and discussions 
(a)  Bottom obstacles (Jisures 2, 3, 4, 5)  

As in Newman (1965b), the prominent feature is the oscillatory nature of the 
reflexion coefficients resulting from the interaction between the two ends of 
the obstacle (figure 2). The oscillation increases with the obstacle length. We 
remark that the scattering of a semi-infinite shelf studied by Newman (1964a) 
and Miles (1967) cannot be obtained by taking the limit 1 + cofrom our treatment, 
since, from the standpoint of an initial-value problem, their problem corresponds 
to letting 1 -+ co before letting t + co whereas our formulation assumes the inverse. 
I n  figure 2 only the phase shift of the transmitted wave, 8,) is plotted: that of the 
reflected wave 6, can be obtained through the following relation: 

6, = 0, + +( - l)Nn, for k,  < k < lcN+l, (7.1) 

where k, ( N  = 1,2,3,  . . .) refer to the successive nodes of the reflexion coefficient 
(excluding k = 0) .  The sudden changes in 8, can be explained by imagining 
a phasor diagram with the unit vectors R, and R, issuing from the origin. 
When the relative phase 6,-6, changes from less than n to greater than n, 

t In similar electromagnetic wave-guide problems, a two-term approximation gives an 
accuracy within a few per cent (Collin 1960, p. 359). 
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FIGURE 2. Reflexion coefficient and transmission phase angle for a submerged obstacle, 
h/H = 2: -, I/H = 0; ---, 1/H = 2; ---, l/H = 4; * . * * - * ,  1/H = 6. 
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F I ~ ~ C E  3. Reflexion coefficient for a submerged obstacle. For l /H = 4.43, h/H = 2.78: 
--, theory; 0, Jolas’ experiment. For l /H = 4.43, h/H = 00: --- , theory ; 
_ _ _ _  , Newman’s approximation. 
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FIGURE 4. Reflexion and transmission coefficients for submerged obstacles. For 1/H = 2.5, 
h/H = 5 :  0, Dick’s experiment, -, theory. For Z/H = 0, h/H = 5: A ,  Dick’s experi- 
ment, - , theory. 
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FIGURE 5. Reflexion coefficient and transmission phase angle for a submerged thin plate. 
_-- , Dean’s exact solution for h + 00; . *, Ogilvie’s long wave approximation. 
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R = +(R, + R,) changes its sense by n and hence 8, - 8, varies from - &r to 
&n in principal value. Since I RI = 0 at 8, - 8, = n these discontinuous changes 
occur a t  the nodes. 

Comparison with Jolas’ (1960) experiment and Newman’s (1965b) corre- 
sponding approximate theory is made in figure 3. Newman’s calculation was 
done on the basis of h -+ co while in the experiments h is finite. Hence two curves 

0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

kH 

FIGURE 6. Reflexion coefficient and reflexion phase angle for a surface obstacle: - 
theory for h/H = 2, Z/H = 0,  1, 3, 5; --- , Ursell’s exact solution for h/H+co 
Z/H = 0 ;  ----, theory for h/H = 6, Z/H = 1. 0, Kincaid’s (1960) experiment for 
h/H = 6.17, 1/H = 1. 

are calculated from the present theory. For h + co our values are based on the 
plane wave approximation and the agreement with Newman is good for long 
and very short wavelengths, but rather crude for intermediate values. It should 
be remarked that, to use Newman’s approach for finite h, the explicit knowledge 
of the semi-inhite shelf with finite h is needed, which is not yet available, see 
Miles (1967). 

Recent experiments by Dick (1968) are plotted against our theory in figure 4. 
For the obstacle with finite length (Z/H = 2.5) higher harmonics are recorded 
on the transmission side and the experimental values of I TI are not easy to define; 
direct comparison with the present theory is therefore not made here. 

For submerged plate barriers (figure 5) it may be noted that the plane-wave 



510 C. C .  Mei and J .  L. Black 

approximation, (5.4), compares quite favourably with Dean’s exact solution. 
Ogilvie’s (1 960) long wave approximation is also included and the agreement with 
the present theory is excellent. 

” 
0 0.2 0.4 0.6 0.8 1.0 1 32 1.4 1.6 1.8 

kl 

FIGURE 7. Reflexion coefficient and reflexion phase angle for a finite dock: -, 
h/Z = 1 ; - - -, h/Z = 3; - - - -, h/Z = 5 ;  - . . a .  ., Stoker’s shallow water result. 

(b)  Surface obstacles (jigures 6 and 7 )  

The effect of varying obstacle length is shown in figure 6 while the case of finite 
dock of zero draught is shown in figure 7 .  We find it convenient to plot the modified 
phase shift 8; = BE - 2E1 instead of OR; physically the former amounts to measur- 
ing the phase angles with respect to the incoming edge x = -1. In all cases, 
8, = 19, + in. For a finite dock in a water of infinite depth Holford (1964) has 
obtained analytically 19; = in + O( l/lcl), which seems to differ from the standing- 
wave solution (hence 0; = 0) of Friedrichs & Lewy (1949, equations (39), (40), 
p. 146) for a semi-infinite dock. Our calculated results indicate the tendency of 
0; +- 0 for large kl. Stoker’s (1957, p. 434) formula based on linear long wave 
approximation is also plotted in figure 7. For l/h = 1 it can be seen that Stoker’s 
result is surprisingly good for practically all values of kl. 

In  conclusion, the variational approach greatly facilitates the calculation of 
scattering properties of rectangular obstacles, of which only limiting cases have 
been treated heretofore. 

This research has been carried out with the sponsorship of the Office of Naval 
Research, U.S. Navy, under Contract no. Nonr-1841(59). The authors are 
indebted to a referee whose comments led t o  some revisions of case 11. 
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